

LA-UR-21-27038

 $\label{lem:proved} \mbox{Approved for public release; distribution is unlimited.}$

Title: Magneto-Inertial Fusion and the Plasma Liner Experiment (PLX)

Author(s): Langendorf, Samuel

Intended for: Web

Issued: 2021-07-20

Magneto-Inertial Fusion and the Plasma Liner Experiment (PLX)

P-4, Los Alamos National Laboratory

Physics Cafe June 24th, 2021

by Triad National Security, LLC for the U.S. Department of Energy's NNSA

PLX Team and Collaborators

LANL

- PI Sam Langendorf
- Tom Byvank
- Feng Chu
- John Dunn
- Levi Grantz

Hyper-V / HyperJet

- PI Doug Witherspoon
- Edward Cruz
- Andrew Case
- Marco Luna

University of New Mexico

- PI Mark Gilmore
- Andrew Lajoie
- Lucas Webster

University of Alabama Huntsville

- PI Jason Cassibry
- Sumontro Sinha
- Aalap Vyas

ARPA-E BETHE Capability Teams

- URochester, PI Petros Tzeferacos
- Virginia Tech, PI Bhuvana Srinivasan
- UT Austin, PI Craig Michoski

The plasma physics field has long been driven by the pursuit of controlled fusion energy, an energy "holy grail"

- Process that powers the sun and other active stars
- Carbon-free
- Plentiful, power-dense fuel, e.g., 1 m³ seawater contains 33 g deuterium, equivalent to 400,000 kg of coal*
- No long-half-life waste**
- · high temperatures required

10 keV ~= 100,000,000 K

Deuterium-Tritium fusion reaction:

Magneto-inertial fusion (MIF) is an alternative "hybrid" approach to fusion energy

 Magnetic confinement – trap / levitate a fusion fuel plasma with strong magnetic fields, heat to fusion conditions with RF, beams, etc.

 Inertial confinement – Compress and heat the fusion fuel rapidly enough to outrun thermal losses and ignite the fuel

 Magneto-inertial confinement – Blend of the two above approaches, compress and heat a magnetized target plasma

Tokamaks, (Stellarators), (Mirrors),

TFTR at Princeton Plasma Physics Lab

High-Power Laser Facilities:

National Ignition Facility (NIF) at LLNL

Electrical Pulsed Power Machines:

Z Machine at Sandia National Labs

MIF is a potential low-cost sweet spot in thermonuclear parameter space

Nominal Breakeven-Class Facility Cost¹ (\$)

 Cost goes up with facility stored energy and effective heating power¹

$$Cost = c_1 E_{PLAS} + c_2 P_{HEAT} \approx \frac{\$10B}{E_{ITER}} E_{PLAS} + \frac{\$3B}{P_{NIF}} P_{HEAT}$$

 Assuming Bohm-like magnetic insulation of energy transport, a cost minimum exists around n ~ 10²⁰ - 10²² cm⁻³, B ~ 1 MG

1. Lindemuth, Irvin R., and Richard E. Siemon. "The fundamental parameter space of controlled thermonuclear fusion." American Journal of Physics 77.5 (2009): 407-416.

Los Alamos National Laboratory 4/23/18 | 5

Fusion progress has historically slowed down when facilities reach the multi-billion dollar scale

(Approximate:)

The Plasma Liner Experiment (PLX) at LANL investigates a "reactor-friendly" MIF approach

- A magnetized plasma target is injected into the target chamber, and then compressed and heated by a heavy high-velocity plasma liner, assembled from discrete jets.
 - Spherical compression
 - All-gas / all-plasma architecture -- no repetitive hardware destruction
 - Physical "standoff" distance from burn location
 - Compatible with high-efficiency driver technologies and high-beta magnetized targets

Thio, YC Francis, et al. "Plasma-jet-driven magneto-inertial fusion." *Fusion Science and Technology* 75.7 (2019): 581-598.

Hsu, Scott C., et al. "Spherically imploding plasma liners as a standoff driver for magnetoinertial fusion." *IEEE Trans. Plasm. Sci.* 40.5 (2012): 1287-1298.

The Plasma Liner Experiment (PLX) at Los Alamos is built to investigate PJMIF

ca. 2017 - ALPHA program

ca. 2020 – building up to spherical liner

Hyper-V Technologies / Hyperjet Fusion have designed and built world-leading plasma guns for PLX / PJMIF

PLX-ALPHA Project:

- "Alpha0" and "Alpha1" were prototype dense-plasma coaxial guns
- "Alpha2" gun (below) demonstrated high performance jets
- "HJ1" gun improved the engineering and robustness for 36 gun experiment

Over the past decade, PLX has explored the merging of discrete supersonic plasma jets and the assembly of a plasma liner

Results from PLX have explored different regimes of plasma jet merging, ranging from collisional plasma shock formation to diffuse interpenetration

Merritt et al. Phys. Rev. Lett. **111**, 085003 (2013)

Moser et al. Physics of Plasmas 22.5 (2015): 055707

Langendorf et al. Phys. Rev. Lett. *121*(18), 185001.

PLX results indicate the need to account for jet interpenetration in PJMIF integrated modeling efforts

Plasma kinetic Neutral kinetic **PJMIF** Liner **PJMIF Target** Rad-Hydro codes Neutral fluid Plasma fluid

Departure from Maxwellian distribution

Degree of ionization / collective behavior

First results of spherical liner experiments were obtained early this year

Visible light emission recorded on fast framing cameras:

Laser interferometer measures density profile of liner implosion & rebound

5 chords, 3 radii, 13 cm radial spacing

Los Alamos National Laboratory 10/24/2019 | 13

Comparisons with hydrodynamic simulation indicate that interpenetration significant in observed density profile

Simulations c/o Jason Cassibry / Aalap Vyas, Univ. Alabama Huntsville:

Significant density losses due to plasma interpenetration and "missing" the target Lower velocity, higher-ion-mass liners may increase performance

Magnetized target plasma injectors being developed by our collaborators, towards ultimate integrated experiments

Los Alamos National Laboratory 10/24/2019 | 15

ARPA-E BETHE program objectives: develop an integrated subscale PJMIF demonstration (Liner + Target)

Goal: put some data points on these graphs!

